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A rheological governing relation for the solutions and melts of linear polymers has been obtained based on
the microstructural ideas of the dynamics of a polymer chain. A relation for taking into account the influence
of the polydispersity of polymers on the properties of the mixture has been proposed and the components of
the complex shear modulus — the elastic modulus and the loss modulus — have been calculated. The per-
formed comparison of the theoretical results obtained and the experimental data for the mixtures of two sam-
ples of polystyrene in different ratios demonstrates satisfactory agreement of theory and experiment.

Polymer materials are finding increasing use at present in various fields of science and technology, which en-
tails a continuous improvement of the technology of the processes of manufacturing and processing of linear polymers.
Therefore, modeling of the motion of polymer media in different units of production equipment becomes the most im-
portant practical problem, to solve which one must construct mathematical models of the mechanics of polymer liq-
uids. For description of flows of the solutions and melts of linear polymers one often employs equations failing to
take into account certain substantial features of the behavior of polymer liquids. It is well known that the solutions and
melts of linear polymers display the gradient dependence of the elongation and shear viscosity, the first and second
differences of normal stresses, and the retardation effects, i.e., they are nonlinear viscoelastic media. Therefore, it be-
comes necessary to take a more detailed account of the special properties of the material in constructing rheological
relations which adequately describe combined nonuniform flows of polymer media.

To solve this problem we consider the motion of a set of Brownian particles of all macromolecules in the ap-
proximation of a continuous medium. For this purpose we introduce such macroscopic variables as the density ρ(x, t)
and the momentum density ρv(x, t) that are determined in a standard manner [1, 2]:
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The averaging is carried out over all kinds of realizations of the random force acting on a particle.
The equation of the dynamics of the Brownian particles is written in the form
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Here and in what follows we will employ the agreement on summation over double indices.
To obtain the momentum equation from (1), using Eq. (2), we find the rate of change of the momentum of

the unit volume of the liquid, formed by the Brownian particles:
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Let us separate the stress tensor in (3), for which purpose we must write the terms on the right-hand side in the form
of the divergence of a certain tensor. The second term in (3) has already been written in the required form. In the
third term, we expand formally the δ function in a Taylor series about the center of mass of the νth macromolecule
qν and restrict ourselves just to the first two terms of the expansion:
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Assuming that all the macromolecules are equal and that their coordinates of the center of mass are statisti-
cally not connected with the remaining coordinates, with account for relation (4) we write the expression for the stress
tensor in normal coordinates:
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Next, it is convenient to pass to dimensionless covariances according to the formulas
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Then expression (5) will take the form
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Earlier (in [3]), we have found the expressions for xik
α  and uik

α :
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(7)

The system of equations (6)–(7) represents the rheological equation of state of a nonlinear anisotropic viscoe-
lastic liquid for mathematical modeling of different flows of a polymer medium. This system was employed earlier for
description of the linear and nonlinear properties of the solutions and melts of linear polymers with a narrow molecu-
lar-mass distribution in simple shear and uniaxial tension [2].

Based on the system of equations (6)–(7), we obtained in [3] the model of zero approximation by the avail-
able small molecular parameters
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(8)

The equations obtained are the rheological governing relation with four scalar parameters: η0 = nTτ0 and τ0
are the initial values of the shear viscosity and the relaxation time and κ and β are the phenomenological parameters
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of the model which take account of the size and shape of a coiled molecule in the equations of macromolecular dy-
namics. When β = 0, Eqs. (8) yield the well-known structural-phenomenological model of Pokrovskii and Vinogradov
[2].

Based on the rheological model of zero approximation (8) we numerically investigated in [2–4] the stationary
viscosimetric functions: the viscosity, the first and second differences of normal stresses in simple shear, and the vis-
cosity in uniaxial tension as functions of the constant velocity gradient. We found the ratio of the stationary viscosity
in uniaxial tension to the stationary viscosity in shear as a function of the first invariant of the tensor of additional
stresses. In [5, 6], based on the model (8) written in cylindrical coordinates we: (a) obtained a correction to the
Poiseuille law; (b) investigated flows in cylindrical regions with the rotating end and bottom of a cylinder with a free
surface for a polymer liquid. The influence of the molecular weight and the polydispersity of a polymer sample on the
shear and longitudinal viscosities was investigated in [7, 8], and the superposition of a simple shear flow on periodic
deformations with small amplitudes was investigated in [9].

Let us compare results of the calculations from the system of equations (8) to experimental data for simple
oscillating shear flow, when ν12(t) = ν12 exp −(iωt). In this case the behavior of a polymer system is characterized by
the dynamic shear modulus, which is determined as

G (ω) = iω 
σ12 (ω, t)
ν12 (ω, t)

 .

Equations (8) lead to the following expression for G(ω) [2]:
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The expressions for the relaxation times have the form

τα = 
τ
2

 + τα
R

 (B + E) ,   τα
∗

 = 
2ττα

2τα + τ
 .

Next, it is convenient to separate in G(ω) involved in (9) the real and imaginary parts

G (ω) = G′ (ω) − iG′′  (ω) .

Thus, the behavior of the polymer system is characterized by the following four parameters: two dimension-

less parameters, i.e., χ and ψ = 
E
B

, and two dimensional parameters, i.e., Bτ∗  and nT. The parameter nT is determined

from the values of the molecular weight and the weight concentration of the polymer, the value of the initial shear

viscosity is found from the dependence G′′ (ω) = η0ω at small ω, and the values of the parameter Bτ∗  and the dimen-

sionless parameters χ and ψ are determined from the relations [2]

Bτ∗
 = 

6η0

π2
nT

 ,   χ = 
π2

12
 
Me

M
 ,   ψ = 

4π2

9χ
 .

The results of numerical modeling were compared to the experimental data [10] obtained for polystyrenes with
molecular masses of M1 = 166,000 and M2 = 568,000 and their mixtures at the temperature T = 180oC. We found the
following values of the parameters of the model:

sample 1:   nT = 22 678 Pa ,   η0 = 25 000 Pa ,   Bτ∗
 = 0.8 sec ,   χ = 0.09 ,   ψ = 49 ;
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sample 2:   nT = 6629 Pa ,   η0 = 2 000 000 Pa ,   Bτ∗
 = 184 sec ,   χ = 0.03 ,   ψ = 167 .

The elastic modulus and the loss modulus for the mixtures were computed from the formulas yielded by the
expressions for the stress tensor of a polymer system with allowance for polydispersity [11]:

G′ = 
c1n1

c1n1 + c2n2
 G1

′  + 
c2n2

c1n1 + c2n2
 G2

′  ;   G′′  = 
c1n1

c1n1 + c2n2
 G1

′′ + 
c2n2

c1n1 + c2n2
 G2

′′  . (10)

The experimental data [10] for the dependence of the shear modulus and the loss modulus and the results of
numerical modeling are presented in Fig. 1. Curves 1 and 1′ are constructed for the melt of polystyrene with a mo-
lecular mass of M1 = 166,000, curves 5 and 5′ are plotted for the sample with a molecular mass of M2 = 568,000,
and curves 2, 2′, 3, 3′, 4, and 4′ are constructed for the mixtures of these two polymers in ratios indicated in the cap-
tion to the figure, where the percentage of the first sample is given in the numerator while the percentage of the sec-
ond sample is given in the denominator.

We emphasize that if one employs for calculations the expressions of the elastic modulus and the loss modu-
lus for the mixtures [12]

G′ =  c1 √G1
′  + c2 √G2

′ 

2

 ,   G′′ =  c1 √G1
′′  + c2 √G2

′′ 


2
 , (11)

the results obtained insignificantly differ from those given in the figure. However, as we believe, the method of ob-
taining relations (9) is more simple and consistent than the method employed in derivation of relations (11).

Thus, within the framework of a consistent theory of microviscoelasticity, one can satisfactorily describe the
dynamic characteristics of polymer mixtures, which is the basis for taking account of the influence of the polydisper-
sity of polymer samples on their rheological properties.

This work was carried out with support from the Federal Targeted Program "Integration 2002–2006" (project
No. I0114).

NOTATION

ρ(x, t), density; ρv(x, t), momentum density; t, time; x, radius vector of the selected point of space; m, mass
of a Brownian particle; rαν(t) and uαν(t), radius vector and vector of the velocity of the αth bead of the νth macro-
molecule; δ, delta function; ri

αν, ith component of the radius vector of the αth particle of the νth macromolecule;

Fig. 1. Comparison of the experimental [10] and theoretical (10) dependences
of the elastic modulus (a) and the loss modulus (b) on the vibrational fre-
quency for variously composed mixtures of polystyrene: 1) M1 = 166 kg/mole;
2) 99/1 mixture; 3) 90/10 mixture; 4) 58/42 mixture; 5) M2 = 568 kg/mole (1–
5, theoretical curves; 1′–5′, experimental data). G′ and G′′ , Pa; ω, sec−1.
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ui
αν, ith component of the velocity of the αth particle of the νth macromolecule; Pi

αν, frictional force; Qi
αν, force of

internal friction; Φi
αν, random force; 2Tµ, coefficient of elasticity of the small model spring; Aαγ, force matrix; xi, ith

component of the radius vector; vi, ith component of the velocity; σk, average force acting on particles from the carrier
medium; qν, center of mass of the νth macromolecule; qi

ν, ith component of the center of mass of the νth macromole-
cule; ρi

α, ith generalized coordinate of the αth particle; Ti
α, ith component of the force of internal viscosity acting on

the αth particle; n, density of the number of molecules; T, temperature in energy units; δik, Kronecker delta symbol;
λα, eigenvalue of the force matrix; vik, velocity-gradient tensor; γik, symmetrized velocity-gradient tensor; τα

R, Routh set
of relaxation times; τ, relaxation time; τ∗ , characteristic time of relaxation of the undiluted system; ψ, measure of in-
ternal viscosity; B, measure of amplification of the coefficient of friction due to the involvement of the surrounding
macromolecules in motion; E, coefficient of "internal" friction of a macromolecule in the undiluted system; bik

α , cik
α ,

fik
α , and dik

α , tensor coefficients of friction; αik, anisotropy tensor; I, first invariant of the additional-stress tensor; η0 and
τ0, initial values of the sheer viscosity and the relaxation time; κ and β, phenomenological parameters of the model,
which take account of the size and shape of a coiled molecule in the equations of macromolecular dynamics; ω, vi-
brational frequency; G(ω), dynamic shear modulus; τα

∗  and τα, sets of relaxation times; χ, parameters of environmental
aftereffect; N, number of subchains in the model of a macromolecule; G′(ω), elastic modulus; G′′ (ω), loss modulus;
Me, length of the chain between the "linkages" in the undiluted system [2]; M, molecular mass; G1

′ ,  G1
′′ , G2

′ , and
G2

′′ , values of the elastic modulus and the loss modulus of polymers with molecular masses M1 and M2; c1 and c2,
weight concentration of the polymer in the mixture; n1 and n2, number of macromolecules per unit volume. Subscripts
and superscripts: i, j, k, l, m, and n, numbers of Cartesian coordinates (they take on values of 1, 2, and 3); ν, No. of
the macromolecule; α, No. of the bead in the macromolecule (it takes on values of 1 to N); e, linkage.
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